Using Output Strict Locality to Model and Learn Long-distance Processes

Jane Chandlee

&

University of Delaware

Nemours Biomedical Research

・ 同 ト ・ ヨ ト ・ ヨ ト

November 15, 2014

Main objectives

- Define *Output Strict Locality*, a strong computational property that holds of the mapping from UR to SR.
- Show how the output-oriented nature of this property is needed to model spreading processes.
- Analyze various long-distance processes with a component of OSL spreading.

▲ □ ▶ ▲ □ ▶ ▲

Computational properties

- Phonological processes are *maps* (i.e., functions) from an input (UR) to an output (SR).
- The nature of these maps helps us characterize possible phonological processes.
 - (1) Tesar (2008, 2012, 2014) characterizes certain maps as *output-driven*.
- Also aids in learning, when the learner can use the computational property as an inductive principle or bias.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Phonological maps are REGULAR

Johnson (1972); Kaplan and Kay (1994); Koskenniemi (1983)

・ロト ・回ト ・モト ・モト

Phonological maps are SUBSEQUENTIAL

Mohri (1997); Chandlee et al. (2012); Gainor et al. (2012); Heinz and Lai (2013); Jardine (2013); Luo (2013); Payne (2013); Chandlee and Heinz (2012)

Phonological maps are STRICTLY LOCAL

・ロト ・回ト ・ヨト ・ヨト

э

For any function $f: \Sigma^* \to \Gamma^*$ and $x \in \Sigma^*$, let the *tails* of x with respect to f be defined as

 $\texttt{tails}_f(x) = \left\{(y,v) \in \Sigma^* \times \Gamma^* \mid f(xy) = uv \land u = \texttt{lcp}(f(x\Sigma^*))\right\} \,.$

3

Post-nasal obstruent voicing (Quechua, Orr (1962); Rice (1993); Pater (2010))

- (2) f(kampa) = kamba
- (3) $tails_f(kam) = \{(p,b), (m,m), (a,a), (k,k), (d,t)...\}$

(人間) ト く ヨ ト く ヨ ト

э

Input Strict Locality

Definition (Input Strictly Local Function)

A function f is Input Strictly Local (ISL) if there is a k such that for all $u_1, u_2 \in \Sigma^*$, if $\text{Suff}^{k-1}(u_1) = \text{Suff}^{k-1}(u_2)$ then $\text{tails}_f(u_1) = \text{tails}_f(u_2)$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Input Strict Locality

Definition (Input Strictly Local Function)

A function f is Input Strictly Local (ISL) if there is a k such that for all $u_1, u_2 \in \Sigma^*$, if $\text{Suff}^{k-1}(u_1) = \text{Suff}^{k-1}(u_2)$ then $\text{tails}_f(u_1) = \text{tails}_f(u_2)$.

(4) $tails_f(kam) = tails_f(tam) = tails_f(kamam) = tails_f(kamamam) = \{(p,b),(m,m),(a,a),(k,k),(d,t)...\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

ISL FST characterization

Learning ISL

ISLFLA: state merging algorithm (Chandlee 2014; Chandlee et al. 2014)

Learning ISL

SOSFIA (Jardine et al. 2014)

・ロト ・回ト ・モト ・モト

æ

Empirical coverage of ISL

(5)
$$A \rightarrow B / C _ D$$

- If CAD is a finite language and the rule applies simultaneously, the mapping is ISL (see Kaplan and Kay, 1994; Hulden, 2009; Chandlee, 2014).
- This includes epenthesis, deletion, local substitution, metathesis, local partial reduplication, general affixation (approx. 94% of the processes in P-Base (v.1.95, Mielke (2004))).

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-ISL processes

Because ISL functions only pay attention to the input, the trigger of the process must be present underlyingly.

▲ □ ▶ ▲ □ ▶ ▲

Nasal spreading

(6) Johore Malay (Onn 1980)

- a. $[-nasal] \rightarrow [+nasal] / [+nasal] _$
- b. pəŋawasan \mapsto pəŋãwãsan, 'supervision'

- 4 回 > - 4 回 > - 4 回 >

э

Nasal spreading

(8) a. pəŋaw
$$\mapsto$$
 pəŋãŵ

b.
$$paw \mapsto paw$$

(9) a. tails_f(pəŋaw) = {(p,p),(a,ã),(w,
$$\tilde{w}$$
),...}

b.
$$tails_f(paw) = \{(p,p),(a,a),(w,w), \ldots\}$$

<ロ> <同> <同> < 回> < 回>

æ

Output Strict Locality

Definition (Output Strictly Local Function)

A function f is Output Strictly Local (OSL) if there is a k such that for all $u_1, u_2 \in \Sigma^*$, if $\operatorname{Suff}^{k-1}(f(u_1)) = \operatorname{Suff}^{k-1}(f(u_2))$ then $\operatorname{tails}_f(u_1) = \operatorname{tails}_f(u_2)$.

(人間) (人) (人) (人) (人) (人)

Output Strict Locality

(10) a. pəŋa
$$\mapsto$$
 pəŋ \tilde{a}

$$\mathsf{c}.\quad\mathsf{papa}\mapsto\mathsf{papa}$$

$$\begin{array}{ll} (11) & \texttt{tails}_f(\texttt{pəŋa}) = \texttt{tails}_f(\texttt{pəŋawa}) = \\ & \{(\texttt{p},\texttt{p}),(\texttt{a},\widetilde{\texttt{a}}),(\texttt{w},\widetilde{\texttt{w}}),\ldots\} \end{array}$$

(12)
$$tails_f(papa) = \{(p,p), (a,a), (w,w), ...\}$$

- 4 回 > - 4 回 > - 4 回 >

æ

Output Strict Locality

$\mathsf{OSL} = \mathsf{transitive\ closure\ of\ ISL\ }\circ\ \mathsf{ISL}$

э

Output Strict Locality

- Conjecture: the ISL functions of interest to phonology are also OSL.
 - (13) Final devoicing: bad \mapsto bat
 - (14) Place assimilation: inpossible \mapsto impossible
- Some processes are *only* OSL.

・ 同 ト ・ ヨ ト ・ ヨ ト

Schwa deletion

$$\mathsf{a.} \quad \mathsf{a} \to \emptyset \ / \ \mathsf{VC_CV}$$

a. ty dəvən
$$\varepsilon \mapsto$$
 ty dvən ε

b. ty dəvən
$$\varepsilon \mapsto$$
 ty dəvn ε

c. ty dəvən
$$\epsilon \mapsto *$$
ty dvn ϵ

・ロト ・四ト ・ヨト ・ヨト

æ

Long Distance Processes

Spreading: trigger arbitrarily far from target, but iteration makes the process local.

э

Long Distance Processes

Harmony: spreading but with certain segments skipped.

(4 同) (4 日) (4 日)

э

Harmony

Vowel harmony without transparent vowels.

(17)
$$\mathsf{V} \to [+\alpha] / \mathsf{V}_{+\alpha} \mathsf{C}_0^{k-2}$$

k =length of maximum coda + maximum onset + 2

(4 同) (4 日) (4 日)

э

Harmony

Vowel harmony with transparent vowels.

There is no k such that the target and trigger vowel will form a contiguous substring bounded by k.

▲□▶ ▲ 国▶ ▲ 国▶

Harmony

Vowel harmony with transparent vowels:

- 1) spread harmonizing feature to all vowels \checkmark OSL
- 2) remove feature from transparent vowels \checkmark OSL

(Clements 1977; Vago 1980)

Vowel transparency

- (18) Khalkha Mongolian rounding harmony, [i] transparent(Svantesson et al. 2005; Gafos and Dye 2011)
 - a. poor-ig-o, 'kidney.ACC.RFL'
 - b. teek-ig-o, 'food.ACC.RFL'

(1)
$$V \rightarrow [+round] / V_{[+round]} C_0^{k-2}$$

(2) $y \rightarrow i$

 $\textsf{poor-ig-O}\mapsto_1\textsf{poor-yg-o}\mapsto_2\textsf{poor-ig-o}$

- 4 同 6 4 日 6 4 日 6

LD assimilation

(19) Kikongo nasal assimilation (Rose and Walker 2004)
a. /tu-kun-idi/ → [tukunini] 'we planted'
b. /tu-nik-idi/ → [tunikini] 'we ground'
(1) [+voice] → [+nasal] / [+voice] T₀^{k-1} ____
(2) [-cons] → [-nasal]

tu-nik-idi
$$\mapsto_1$$
 tu-nĩk-ĩnĩ \mapsto_2 tu-nik-ini

3

LD displacement

$$p^{\circ}$$
áw-ən-cat-əlx $\mapsto p^{\circ}a^{\circ}w^{\circ}$ -ə $^{\circ}n^{\circ}$ -c $^{\circ}$ át-əlx \mapsto paw-ən-c $^{\circ}$ át-əlx

æ

OSL composition

OSL functions are not closed under composition!

э

OSL composition

Theorem (Elgot and Mezei 1965)

A function $f : X^* \mapsto Y^*$ is a regular relation iff there exists a left subsequential function $g : X^* \mapsto Z^*$ and a right subsequential function $h : Z^* \mapsto Y^*$, with $X \subseteq Z$, such that $f = g \circ h$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weakly Deterministic Function

Definition (Weakly Deterministic Function, (Heinz and Lai 2013))

A regular function f is weakly deterministic iff there exists a left subsequential function $g: X^* \mapsto X^*$ and a right subsequential function $h: X^* \mapsto X^*$ such that g is not length-increasing and $f = g \circ h$.

同 ト イ ヨ ト イ ヨ ト

Weakly Deterministic Function

・ロト ・四ト ・モト ・モト

æ

How much markup?

Will constraints on markup likewise restrict the power of $OSL \circ OSL$? If so, what are those constraints?

□ > < = > <

Two options for LD processes

Option 1

- One computational property, OSL, characterizes both local and long-distance processes.
- Like ISL, the OSL property can also be used to learn these maps (stay tuned!).

・ 同 ト ・ ヨ ト ・ ヨ ト

Two options for LD processes

Option 2

- Local processes are characterized as those OSL maps that *are* closed under composition (i.e., Structure Preservation, Kiparsky 1985)).
- Long distance processes require a distinct, to-be-defined property (e.g., Strictly Piecewise, Tier-Based Strictly Local).

伺 ト く ヨ ト く ヨ ト

Acknowledgments

Thanks to Jeffrey Heinz, Rémi Eyraud, Adam Jardine, and James Rogers for valuable contributions and discussion.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Optimization

Nonregular mappings can be obtained through the interaction of simple markedness constraints and standard faithfulness constraints (Riggle 2004; Gerdemann and Hulden 2012).

・ 同 ト ・ ヨ ト ・ ヨ ト

Optimization

Ident, Dep $\gg *ab \gg Max$

Non-regular relation: $a^n b^m \mapsto a^n$, if m < n $a^n b^m \mapsto b^m$, if n < m

(日)

э

Strict Locality

• A *Strictly k-Local formal language* is one for which the following property holds:

Theorem (Suffix Substitution Closure)

(Rogers and Pullum 2011) \mathcal{L} is Strictly Local iff for all strings u_1 , v_1 , u_2 , v_2 , there exists $k \in \mathbb{N}$ such that for any string x of length k - 1, if $u_1 x v_1$, $u_2 x v_2 \in \mathcal{L}$, then $u_1 x v_2 \in \mathcal{L}$.

Strict Locality

Post-nasal obstruent voicing

- (21) Quechua (Orr 1962; Rice 1993; Pater 2010)
 - a. sinik-pa 'porcupine's'
 - b. kam-ba 'yours'

・ 同 ト ・ ヨ ト ・ ヨ ト

Strict Locality

Post-nasal obstruent voicing: Valid surface strings are a SL-2 language.

 TVNDV in the language. NVNTV in the language.

TVNTV necessarily in the language.

Strict Locality

- Surface constraints expressible with a contiguous substring of bounded length can be are Strictly *k*-Local, where *k* is the length of the illicit substring (?).
- For *processes* (i.e., $UR \mapsto SR$), we need *functions*.

(人間) ト く ヨ ト く ヨ ト