Strictly Local Phonological Processes

Jane Chandlee

University of Delaware

NECPhon 2013 – MIT
Main objectives

- Propose a tighter computational characterization of phonological processes that apply locally.
- Define the class of Strictly Local functions, which can be shown to model such processes.
- Promote locality from a tendency to a defining property of many phonological processes.
Phonological mappings

- Final devoicing: (ba:d, ba:t)
- -son \Rightarrow -voice / ___#
- *[son, +voice]# \gg IDENT(voice)
Phonological mappings

- (CAD, CBD)
- $A \Rightarrow B / C \rightarrow D$
- $^*\text{CAD} >> \text{FAITH}(A \Rightarrow B)$ (Baković 2013)
- Locality as a property of the *mapping*.
- Tesar (to appear): phonological maps are output-driven
Overview

1. Strictly Local Languages and Phonotactics
2. Strictly Local Functions and Processes
3. Learning SL
4. Exclusions and Extensions
Class of formal languages describable with grammars of \(k \)-factors (= substrings of length \(\leq k \))

A string is in the language iff its own \(k \)-factors are a subset of the grammar.

Words can’t end in a voiced obstruent.

- SL-2 grammar that omits the 2-factor $D\#$, where $D = \{b, d, g, v, z, ʒ, dʒ\}$
(2) **Suffix Substitution Closure** (Rogers & Pullum 2011): A language is SL iff there is some k such that for any string x of length $k - 1$ and strings u_1, v_1, u_2, v_2 (of any length), if u_1xv_1 and u_2xv_2 are in the language, then u_1xv_2 must also be in the language.
Strictly Local Languages

- Canonical FSA for a SL-\(k \) language has \(Q = \Sigma^{\leq k-1} \).
- Transitions defined such that \(q \) = the most recent symbols of the input.
Canonical FSA for a SL-\(k \) language has \(Q = \Sigma \leq k-1 \).

Transitions defined such that \(q = \) the most recent symbols of the input.

\[\Sigma^* aa \Sigma^* \]
SL languages and phonotactics

Strictly Local Phonological Processes

Jane Chandlee

Introduction

Strictly Local Languages

Strictly Local Functions

Phonological Processes

Future work
From sets to functions

Phonotactics
*b#
*d#
*g#

SL if the restriction is against a contiguous substring of bounded length (Heinz 2010).
From sets to functions

Phonotactics	Processes
*b#|→ p#
*d#|→ t#
*g#|→ k#
From sets to functions

(3) \(x_i \Rightarrow y_i \) / U __ V

<table>
<thead>
<tr>
<th>Phonotactics</th>
<th>Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>*ux_1 v</td>
<td>(\mapsto uy_1 v)</td>
</tr>
<tr>
<td>*ux_2 v</td>
<td>(\mapsto uy_2 v)</td>
</tr>
<tr>
<td>*ux_3 v</td>
<td>(\mapsto uy_3 v)</td>
</tr>
</tbody>
</table>

SL if there is an upper bound on the strings in UXV.
Automata-theoretic characterization

- The SL functions are believed to be a proper subset of the subsequential functions, which are those describable with subsequential finite state transducers (SFSTs).
- These FSTs are deterministic on the input and include a final output function that maps each state to a string, which is appended to the output if the input ends in that state (all states are final) (Mohri 1997).
Final devoicing

(4) $D \Rightarrow T / _- \#$
Final devoicing

Input: C V D
State: \(\lambda \)
Output:
Final devoicing

Input: C V D
State: λ ⇒ C
Output: C
Final devoicing

Input: C V D
State: \(\lambda \) \(\Rightarrow \) C \(\Rightarrow \) V
Output: C V
Final devoicing

Input: \[C \quad V \quad D \]
State: \[\lambda \Rightarrow C \Rightarrow V \Rightarrow D \]
Output: \[C \quad V \quad \lambda \]
Final devoicing

Input: \(C \ V \ D \)

State: \(\lambda \Rightarrow C \Rightarrow V \Rightarrow D \)

Output: \(C \ V \lambda \ T \)
Final devoicing

Input: C V D V

State: λ ⇒ C ⇒ V ⇒ D ⇒ V

Output: C V λ DV λ
Mode of rule application

\[(5) \quad a \Rightarrow b \quad / \quad a \quad \rightarrow \quad a\]

Simultaneous	Left-to-right	Right-to-left
aaaa \rightarrow abba | \rightarrow abaa | \rightarrow aaba

(Kaplan & Kay 1994)
Definition

A function f is Strictly Local iff there is some k such that f can be described with a SFST for which $Q = \Sigma^{\leq k-1}$, and

- (simultaneous) $\forall q \in Q, a \in \Sigma, (q, a, o, \text{Suff}_{k-1}(qa)) \in \delta$
- (left-to-right) $\forall q \in Q, a \in \Sigma, (q, a, o, \text{Suff}_{k-1}(qo)) \in \delta$
Simultaneous application

(6) \(a \Rightarrow b / a _ a \)

\(aaaa \rightarrow abba \)
Left-to-right application

(7) \(a \Rightarrow b \) / \(_ _ a \)

aaaa \(\mapsto \) abaa
What kinds of processes are SL?

1. Substitution

 \(x_i \Rightarrow \lambda / U _ _ V \)

2. Deletion

3. Epenthesis

 \(\lambda \Rightarrow y / U _ _ V \)

4. ‘Bounded’ metathesis
Metathesis

Metathesis = Delete ◦ Copy (Blevins & Garrett 1998, Heinz 2005, Chandlee & Heinz 2012)

(10) Rotuman (Churchward 1940)
 a. VCV# \rightarrow VVC#
 b. Copy: \lambda \Rightarrow V_1 / V _ CV_1#
 c. Delete: V_1 \Rightarrow \lambda / VV_1C _ #
 Metathesis

- ‘Long-distance’ metathesis

 (11) Cuzco Quechua (Davidson 1977)

 a. yuraq ⇒ ruyaq, ‘white’
 b. aBc ↦ cBa

- Still bounded if the length of all \(b \in B \) is bounded.
What kinds of processes are SL?

1. Substitution
2. Deletion
3. Epenthesis
4. ‘Bounded’ metathesis
5. Local partial reduplication/affixation
Local partial reduplication

(12) a. Local prefixation: $CVx \leftrightarrow CV-CVx$
b. Local suffixation: $xCV \leftrightarrow xCV-CV$
c. Local infixation: $C_1VCx \leftrightarrow C_1VC_1C_x$

(13) a. General prefixation: $un-x$
b. General suffixation: $x-\text{ing}$
What does this get us?

- Empirical coverage: at least 96% of the approx. 5500 processes in P-Base (v1.95, Mielke 2008) are Strictly Local
- Learning: SL functions can be learned with a modified OSTIA (Ocina et al. 1993) that uses strict locality as a learning bias (Chandlee & Jardine 2013, Chandlee & Koirala 2014)
Learning SL

- Regular
- Left
- Subsequential
- SL
- Right
- Subsequential
What *isn’t* SL?

- Nonlocal partial reduplication (Riggle 2003)
- Vowel harmony with transparent vowels (Nevins 2010, Gainor et al. 2012, Heinz & Lai 2013)
- Dissimilation (Suzuki 1998, Bennett 2013, Payne 2013)
- Some tonal patterns (Jardine 2013)
Future work

Future work

Future work

References

References

English flapping

(14) \[t \Rightarrow r / \breve{V} V (k = 3) \]
Greek fricative deletion (Joseph & Philippaki-Warburton 1987)

(15) \(\{\theta, \delta\} \Rightarrow \lambda / _ \{s, \theta\} \ (k = 2) \)
Dutch schwa epenthesis (Warner et al. 2001)

(16) $\lambda \Rightarrow \varepsilon / \{l, r\} \rightarrow [-\text{coronal}]$ ($k = 3$)